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When linear acoustic theory is applied to the thickness noise problem of a supersonic 
propeller, it can give rise to a surface on which the pressure is discontinuous or 
singular. A method is described for obtaining the equation of this surface (when it 
exists), and the pressure field nearby; jumps, logarithms and inverse square roots 
occur, and their coefficients may be calculated exactly. The special case of a blade 
with a straight radial edge gives a cusped cone, whose sheets, each with a different 
type of discontinuity or singularity in pressure, are separated by lines of cusps; the 
coefficients in formulae for the pressure near the surface tend to infinity as a cusp line 
is approached, in proportion to the inverse quarter power of distance from the line. 
These results determine regions of space where nonlinear effects are important, and 
they suggest a strong analogy with sonic boom. 

1. Introduction 
Several investigators of propeller acoustics have noted that linear theory can give 

singularities in the pressure field. Hawkings & Lowson (1974) found a logarithm, and 
Tam (1983) an inverse square root, for sharp and blunt propeller edges, respectively ; 
and singularities also occur implicitly in results of numerical studies, where they take 
the form of spikes truncated down to finite size (e.g. Farassat 1975; Hanson 1976; 
Blackburn 1984). The logarithm and inverse square root were found through the non- 
convergence, in certain regions of space, of a Fourier series representing the pressure 
in the far field; the whole surface of infinite pressure (on linear theory) was not 
revealed. 

Now singularities in solutions of the scalar wave equation have been encountered 
in acoustic problems unrelated to propellers, and a particularly effective time- 
domain method for their analysis was given by Friedlander (1958, pp. 67-70), where 
a logarithm was shown to arise from the focusing of an acoustic shock. This paper 
applies Friedlander’s method to the thickness noise problem of a supersonic 
propeller, to determine the surface on which the pressure is discontinuous or singular, 
and to obtain general formulae for the behaviour of the pressure near that surface. 
The special case of a propeller with a straight radial leading or trailing edge, and no 
axial motion, is discussed in detail, as an illustration of the theory. We shall use the 
term ‘shock’ to mean an acoustic shock, i.e. a finite discontinuity in the pressure. 

A fact to emerge is the similarity between propeller theory and ‘boom ’ analysis ; 
especially relevant is the problem of an accelerating or manoeuvring aeroplane, or 
one flying through a non-uniform atmosphere (Lilley et al. 1953 ; Rao 1956 ; Guiraud 
1965; Warren 1968; Hayes 1971; Wanner et al. 1972). Further references may be 
found in the proceedings of the three NASA conferences on sonic boom (Seebass 
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1967 ; Schwartz 1968, 1971). The difficult problem of how nonlinear effects eliminate 
the singularities of linear theory was begun in some of these papers, and continued 
in, for example, Gill & Seebass (1975), Cramer & Seebass (1978) and Obermeier 
(1983). 

2. The integral for thickness noise 
In  its undisturbed state, the air is taken to  be motionless and of uniform pressure, 

density, and sound speed, denoted p,, po and c, respectively. We shall take the 
propeller blades to be sufficiently thin that the usual assumptions of thin aerofoil 
theory apply. Viscous effects will be neglected, so that a velocity potential 4 may be 
introduced, in terms of which the velocity is u = V 4  and the perturbation pressure 
is p = -poa$/a t .  Only pressure and velocity fields rigidly attached to the propeller 
and rotating with it are of interest ; to describe them we introduce cylindrical polar 
coordinates ( r ,  0 ,  z ) ,  with respect to  which the propeller is rotating about the z-axis 
a t  angular velocity Qe,, where 52 is constant and e, denotes a unit coordinate vector. 
We take the translational velocity to be zero, and the propeller to lie across the plane 
z = 0. Then the relevant solutions are functions of ( r ,  8, z )  only, where 8 = 8'-52t ; the 
operator a/at  may be replaced by - Qa/aO. Since we are considering thickness noise, 
the propeller is assumed to  have the symmetric profile x = +f(r,  8) ,  with f defined for 
all r ,  8 and given the value zero off the planform of the blades. Thus a$/& = f a g  on 
z = f 0 ,  where g = af/aO.  Typical f and g are drawn in figure 1. 

The solution of the wave equation for $, subject to the above boundary condition 
and suitable behaviour a t  infinity, is well known (Farassat 1975 ; Hanson 1976) from 
the Ffowcs Williams-Hawkings equation, and will be quoted. We require the 
integral 

I ( r ,  8, z )  = f' lom m r l  dr, do,, R 
where R = ( r2 + ri - 2rr1 cos 8, + z2)i ,  (2) 

and 0 = 8-8,+QR/c; (3) 

then (4) 

Now g(r ,  8 )  has lines of discontinuity or singularity a t  positions corresponding to the 
leading and trailing edges of the propeller blades, as indicated in figure 1 ;  and 
g(r,,@), regarded as a function of r,,8, at fixed r ,8,z,  behaves similarly. Thus 
although I ( r ,  8, z )  is continuous, the derivative aI/a8 appearing in p is not, and a 
question arises : how are the discontinuities and singularities in p related to those in 
gZ We answer this question below. 

3. Shocks and singularities 
3.1. Effect of leading and trailing edges 

We shall usually take r ,  z as fixed and regard 8 as a variable ; arguments r ,  z will 
often be omitted from the notation. Accordingly, the integral (1) will be written I ( @ ) ,  
so that p oc I '(8).  If the position of an edge is given by an equation h(r, 8 )  = 0, then 
the integrand in (1)  is discontinuous or singular on a surface in (8 ,  r l ,  8,)-space defined 

h(r1,8-8,+QR/c) = 0. (5) 
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FIGURE 1. Graphs off(r,tl) and g(r , t l )  with r fixed. ,a) Sharp leading and trailing edges; 
( b )  blunt leading edge, sharp trailing edge. 

FIGURE 2. A typical part of the surface DS within a solid torus. The function 0 = s(rlr 0,) is 
stationary at A (maximum) and B (saddle). Contours of constant 0 are shown. 

In principle, this equation may be solved for 8 and the surface written 8 = s (r l ,  I?,)  ; 
it will be called the dividing surface, abbreviated DS. Since I? and I?, are angular 
variables, i.e. functions of them have period 27c, we may regard DS as lying in a solid 
torus, as shown schematically in figure 2. For simplicity, subsequent diagrams will 
be drawn as if 8, r, ,  O1 were rectangular Cartesian coordinates, with 8 pointing 
upwards; thus the integral (1) corresponds to taking a horizontal section a t  fixed 8, 
which will intersect DS in one or more curves. 

Let us consider the behaviour of g near DS by following a vertical line of increasing 
8 a t  fixed r l ,  el. Since R does not depend on 8, the function g(rl, 0) on the vertical line 
is the function g shown in figure 1, but with a shift depending on the values of r ,  and 
8,. Therefore if the edge defined by h(r ,8)  is a sharp leading edge, the passage 
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FIGURE 3. (a )  At a fixed section 8, regions of non-zero g(rl, 0) are shaded; boundaries mark 
intersections of DS with the section. ( b )  Regions joining up, as 8 varies. 

upwards through DS marks a discontinuity in g from a negative value to zero; 
indeed, g is zero in a volume above the surface. For a blunt leading edge, g+- co in 
proportion to an inverse square root as DS is approached from below, and then it 
becomes zero above the surface. Trailing edges lead to similar results, but with g zero 
below DS and non-zero above. 

Figure 3(a )  shows a section a t  constant 6 and the corresponding division of the 
( r l ,  6,)-plane into different regions, bounded by curves in which DS intersects the 
section. These regions constitute the propeller blades looked at in retarded time, and 
determine the domain of integration for ( l ) ,  i.e. the region of non-zero integrand; the 
topological character changes as 6 passes through values of stationary points of DS, 
since at a maximum or minimum an 'island' is born or dies, and a t  a saddle point 
the regions join up or separate, as in figure 3 ( b ) .  At these values, I ' (0)  is discontinuous 
or singular ; but elsewhere I '(8) is smooth, since the dividing curves move smoothly 
as a function of 6. 

Now r and z have been fixed in the above discussion. Thus for given r ,  z we obtain 
a set of values of 0 a t  which the function 0 = s (r l r  el), defined implicitly by (5), is 
stationary ; the resulting points ( r ,  0, z )  form a surface SS in (physical) space around 
the propeller, precisely the surface on which shocks and singularities will be found. 
For each point on the surface, a local analysis of DS in (6, rl, O,)-space, coupled with 
the behaviour of g in its vicinity, will determine the nature and strength of the shock 
or singularity. 

We may also obtain SS as an envelope of a two-parameter family of spheres. 
Equivalently, one may start with the envelope of the one-parameter family of  
spheres produced by a rotating point source, as calculated by Lowson & Jupe (1974) ; 
if each supersonic point on the propeller edge were regarded as producing such a 
surface, then the envelope would give SS. 
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3.2. General formulae 

The behaviour of p near a critical value of 0 will now be described. Four cases occur, 
from combinations of either an extremum or saddle point on DS, and either a sharp 
or blunt propeller edge ; although a chord section with a blunt edge violates the thin 
aerofoil assumption, existing computer codes based on linear theory accept such a 
section as input, and the results below are therefore of some interest. Leading terms 
of two Taylor expansions about each critical point of DS are required, one for the 
integrand of ( l ) ,  the other for a(rl, Ol). The resulting integrals can be evaluated 
exactly, and the degree of approximation in p calculated. Details are given in the 
Appendix, from which the formulae of this section may easily be verified. 

3.2.1. Xharp edge;  extremum 

We consider a sharp leading edge, and for definiteness take BC to  be a local 
maximum of DS, since this case arises in an example later (a subscript c will always 
indicate evaluation at  a critical point). The Hessian 

will be needed a t  the point determined by 0, = s(rle, O l e ) ;  by assumption, H > 0. We 
Put 

and let g- denote the limiting value of g(rl, 0) as DS is approached from vertically 
below the critical point, so that Ap and g- are functions of position on the surface SS. 
Then by (A 5), 

(8) 

AP = p(r ,  0:, z ) - p ( r ,  OF, 21, (7) 

AP = &@(a); r19- 

For an angled trailing edge, we let g+ be the limit of g(rl, 0) as DS is approached from 
above, and in (8) replace g-  by -g+ to  obtain the corresponding Ap. Note that g+ 
refers to the position just ahead of the trailing edge, g- to that just behind the leading 
edge. 

3.2.2. Xharp edge ;  saddle 
If 8, is a critical value corresponding to a saddle point on DS, then H < 0, and 

the singular part p ,  of the pressure near SS, in the case of a sharp leading edge, is 

(9) 

by (A 6) .  A trailing edge requires -g+ instead of g- .  

3.2.3. Blunt edge ;  extremum 

h(r ,  0) = 0, which we rewrite as 8 = hl(r),  so that g nearby takes the form 
It.will be assumed that f in figure 1 ( b )  behaves like a square root a t  a blunt edge 
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On the side occupied by the blade, g1 is bounded, and on the other side it is zero. 
From (A 7), a local maximum on DS gives 

(0 < 8,) (leading edge), 
1 

(11) 

(0 > 8,) (trailing edge) ; 

these are one-sided singularities, since the pressure tends to a finite limit as 0 -+ 0, 
from the opposite direction. 

3.2.4. Blunt edge ; saddle 
By (A 8), this case gives one-sided singularities 

(0 > 0,) (leading edge), 
1 [ Q2 ( R ~ ~ ~ ) i ) c  (8-B,)t 

(0 < 0,) (trailing edge). 

In (9)-( 12), note that g+,  9: are positive, and g-, g; negative. 

4. Application to a radial edge 
4.1. Particular form of the equations 

An infinitely long straight radial edge lying on 0 = 0 gives h(r,  0) = 6 ;  thus on scaling 
lengths by the sonic radius c/Q, so that the propeller has sonic velocity a t  unit radius, 
(5 )  becomes 

At fixed r , z  this defines the equation 0 = s(r,, 0,) of DS. Stationary points are 

113) 0 = 0, -R.  

obtained from 
a0 r l - r  cos0, - 

- 0, - - _ -  
ar, R 

i.e. 

hence 

rr, sin 0, 
-= 1 -  = 0, 
ae 
a 6  R 

R = $r2 sin 20,, 

R2 = + P ( l - c 0 ~ 2 6 ~ ) + 2 ~ ;  

( r2  cos20,- 1)' = ( r2 -1 )2 -4x2 ,  

and 0 = ic0s-l [1-l{(r2-r~)2-4z2}i 1-75 1 [ r2-  1 +2z2T{(r2- 1)2-4x2}i]i. 

Since R, r ,  r1 are positive, (14) and (16) imply that 0 < < in. Furthermore, we 
must have r 1 for z2 in (18) to be non-negative, and 4x2 < ( r2-  1)2  for cos 20, to be 
real. A check then shows that if ( r , z )  lies in the region bounded by z = k i ( r2 - l ) ,  
where r > 1,  there are two values of 8,, and hence 0, on the circle of latitude 
determined by the particular ( r ,  x )  ; outside that region there are none (see figure 4). 
Hence SS lies entirely within the volume of revolution specified in figure 4. 
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FIQURE 4. The shaded region is bounded by z = +i(? - 1). If the diagram is rotated about the polar 
axis, each point gives rise to a circle ; those circles from inside the shaded region intersect SS twice, 
and those from outside miss it completely. 

The Hessian of (13) at stationary points is 

1 - r sin f ( ( r 2  - - 4z2}f 
H = - l  R2 - r  sine, 1 -rrl  cos8, R2 

Since the top left-hand entry in the determinant is negative, it follows that positive 
H gives a maximum on DS, negative H a saddle. Now on the circles referred to 
earlier, the two points of intersection with SS correspond to the two signs before the 
square root ; therefore it always happens that one gives a maximum and one a saddle 
on DS. Thus for a sharp edge, one shock and one logarithmic singularity are situated 
on each circle of latitude through the shaded part of figure 4, and for a blunt edge 
two inverse square root singularities occur. 

4.2. Shape of the dividing surface 
We need to sketch the surface 8 = 8, - R a t  fixed r ,  z ,  and determine how its shape 
depends on r ,  z. When 8, increases by 27c, so does 8; moreover 8-8, is nearly constant 
when rl is small. Therefore above a neighbourhood of the origin, DS is helicoidal. 
Exactly above the origin the surface consists of a vertical line, which in the 
diagrammatic form of figure 2 is a circle through the centre of the solid torus. 

The line aOla8, = 0 has equation R = rr, sin 8,. When r > 1 it is a U-shaped curve, 
shown dashed in figure 5 ,  the minimum and leftmost points being 

r2- 1 r2-1+22 i 
cos8, ='( )i rl = ( r z - ~  1,  

r r2- I+zz  ' 

1 ( r2- - l ) ( rZ+zz)~ ,  {(rz+z2)(rz-l+z2) f 
r1 = c o s 4  =; i r 2 - 1 + z 2  

] (21) 

1. r 2 -  1 

Inside the U-curve, i38la8, < 0, and outside, a8/a8, > 0. As r +  1, the whole curve 
moves up to infinity; when r < 1 the U-curve is no longer present, and a8la8, 3 0 
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FIGURE 5. Contours of DS in three cases determined by the number of intersections of the dashed 
lines. Since O1 is an angle, contours must be continued over 8, = n to coincide with those on the 
(same) line O1 = -n, as indicated by the numbering 1 . 2 ,  . . . . In  ( b ) ,  contour 1 has a cusp. Eote that 
the disconnected contours labelled 2 in ( c )  have the same value of 0. 

everywhere. A similar analysis applies to the line on which aO/arl = 0, namely 
rl = r costl,, also shown dashed. When rl + co, we have O+- co. 

Critical points on DS occur a t  the intersections of the two curves just obtained, and 
figure 5 illustrates the three possibilities. The remarks after (19) give the conditions, 
in terms of r ,  z ,  for the various cases ; we also know that when there are two critical 
points the smaller O1 gives a maximum of 0, the larger a saddle. Contours cross the 
U-curve horizontally and the other dashed curve vertically; in each region the sign 
of dr/dOl is known. The contours are vertical when rl = 0. For completencss we note 
that the transitional case of figure 5 ( b )  has 1 ~ 1  = ;(?- 1)  and a critical point 

(22) 

It is also of interest to use coordinates (xl, yl) = (rl cos 01, rl sin 0,) : the vertical 
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FIGURE 6. Transformation of figure 5 ( c )  to the (q, yl)-plane. The contours labelled 2 have the 
same height ; i.e. the retarded propeller edge is disconnected a t  the corresponding value of 0. 

contours on the line rl = 0 become spokes radiating from a hub at (xl, yl) = (0,O) ; the 
lines dtl/ael = 0 and a8/ar, = 0 become the circle and hyperbola 

Figure 6 shows the result when there are two critical points ; the other cases are less 
interesting as each contour simply spirals away from the origin to infinity. 

4.3. The cusped cone 
The shape of SS, defined by (19), will now be built up from sections a t  constant 
r ,  0, z ,  using parametric representations in 19, obtained from (16)-(18). 

4.3.1. Constant z 
The parameterization when z + 0 is 

({ 1 + (1 + 4z2 cot2 1 9 ~ ) i r  1 + (1  + 4z2 cot2 8,); 
2 cot 0, > 8,- 2 cos2 el ( r , @  = 

where 0 < 8, < in. Differentiation of r and 8 with respect t o  8, reveals a common 
factor, vanishing when 8, = i cos-l{1/(1+2121)}, where a cusp occurs (see figure 7).  
The section z = 0 has branches 6' = 0 and 0 = c0s-l ( i / r ) -  (P- l):, both defined for 
r 3 1 .  
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FIGURE 7. Section of SS at popitive z. The asymptote t? = -2 is shown. At the CUSQ, ( r ,  t?) = ({ 1 + 2z}i, 
4 ~ o s - ~ { l / ( l + 2 z ) } - { z ( l + z ) } ~ ) ;  the slope there is dr/dt? = -{( l+z) ( l  + Z z ) / z } i .  Asymptotically, 
t? - in - r  on the spiral when r $ 1. 

4.3.2. Constant r 

A cylinder of fixed r > 1 produces the section 

(I9,lzl) = (B, -$rz sin ZO,,  s ( r z  - 1 ) z  - ( r z  cos 219, - 1 )z)i), (26) 

where 0 < O1 < i COS-~{(Z - r2 ) / r2 }  ; the cusp is found a t  8, = t cos-l( i / r z ) .  For large Y, 
the ‘arrow-head’ (figure 8) may be wrapped several times round the cylinder; note 
that the semi-angle a t  the front of the section equals the Mach angle, as would be 
expected from a local two-dimensional approximation to the propeller’s motion. 

4.3.3. Constant 8 
A meridional section a t  constant I9 gives 

where we must take 8 < 0 and el between 0 and the root of - 19 = tan 0, - 0, in the 
interval (0, $). Cusps occur when - I9 = tan 28, - 8, (see figure 9). 

4.3.4. Complete surface 
The size of the arrow-head in figure 8 increases monotonically from zero as r 

increases from 1 to og ; in the process, 0 traces out the propeller edge, B a spiral, 
together forming the section z = 0. Thus the whole surface is a cusped cone, 
comprising three smooth sheets sewn together tangentially along the cusped edges 
and non-tangentially along the third edge. Near the vertex, parametric equations for 
the surface and cusp lines are 

(28) ( r , O , z )  x (1  +c,-28,(e-$3~), +8,(2e-O$) 

= (1  +e,-$, +€), (29) 
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FIGURE 8. Section of SS by a cylinder of radius r > 1.  The upper cusp has coordinatles ( 8 , z )  = 
( ~ c o s - ' ( l / r 2 ) - ( r 4 - l ) ~ } , ~ r 2 - 1 ) ) ,  and theslope ofSS there isdz/d8= -{(r2+1)/(r-l)}5.  Poin,t B, 
wherez = 0, hasparameter8, = 4 cos-'{(2-r2)/ra}andposition8 = t c o s - ' { ( 2 - r 2 ) / r 2 } - ( r e - - l ) ~ .  At 
the origin, dz/d8 = + r / ( r 2 -  1);. As r varies, the cusps trace out the dashed curve; its equation is 
Iz( - (-p)i when r x 1 and JzI - --8+in--; when r B 1. 

I / 

FIGURE 9. Section of SS by a meridional plane 8; note that - 2n < 8 < 0 and we have superposed 
8-2nn for n = 1,2, .  . . . Asymptotically, IzI - - (8- 2nn) for r & I .  The upper cusps lie on 
z = i ( r z -  1 )  and have coordinates (T ,  z )  = ({sec28,]~,~sec28, - l)), where the values of 8, satisfy 
-8 = i tan28, -8,; the slope of SS at a cusp is dz/dr = - z / 2  sin8,. Points B, for which z = 0, 
are given by r = sec 8,, with - 8 = tan 6, - 8,. 



C. J .  Chapman 

A B  C D  8 

FIGURE 10. ( a )  Section a t  fixed r of a blade with blunt leading edge and sharp trailing edge, showing 
sections of the cones. ( b )  Schematic graph of pressure as a function of B along the dashed line in ( a ) ,  
indicating A :  logarithmic spike; R :  finite jump; C, D:  inverse square root. 

respectively, where in the former 0 < 8, < ( 2 ~ ) ;  < 1, and in the latter E = 8;. The cone 
is flattened almost to a plane in this region, since r -  1 and z are O ( e ) ,  whereas 8 is 

4.4. Shocks and singularities on the cone 

Although H and R in 53.2 are usually complicated functions of position, they 
simplify for a radial edge, because (20) gives (R( 

O ( 4 ) .  

= r, where 

we have reverted to dimensional variables. so that r and z are lengths. Now the cusp 
lines lie in the surface f = 0 ; hence on the cone, the strength of shock or singularity 
tends to  infinity as a cusp is approached, in proportion to the inverse quarter power 
of distance from the cusp line. Such behaviour is well-known from Tricomi’s equation 
(Gill & Seebass 1975). 

The sign of the determinant in (30) may be found using the formulae of 34.3 ; these 
reveal that on the front sheets of the cone, i.e. between the propeller edge and the 
cusp lines, there corresponds a maximum of DS, while on the rear sheet, i.e. between 
the two cusp lines, there corresponds a saddle. Hence a sharp edge produces a shock 
on the front of the cone and a logarithmic singularity on the rear, whereas a blunt 
edge produces inverse square root singularities on both; in the latter case, the sides 
on which the pressure is infinite are different for the front and rear, by 333.2.3 and 
32.4.  
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These results can be illustrated and summarized by considering a propeller with a 
blunt leading edge and sharp trailing edge. Figure lO(a) superimposes the sections of 
the blade and cones a t  fixed r ;  the dashed line intersects the cones a t  8 = B,, . . . , OD 
to give the typical graph of p against B shown in figure l O ( b ) .  Then near A ,  B,  C, 
D we obtain from $3.2 the following expressions for the discontinuous or singular 
component : 

(31) 

5. Discussion 
By the method of 93, formulae as detailed as those of 94 may be obtained for any 

edge of known equation h(r, 0) = 0 ;  a straightforward extension includes the effect of 
blade tips. For a propeller with axial velocity as well as rotation, the generalization 
of (1)-(4) given in Hanson (1976) may likewise be analysed. But only thickness noise 
yields to the method, since the linear loading problem gives an integral equation, not 
an explicit solution of the form (4). 

The results obtained above may be interpreted in terms of rays: rotation of the 
cusped cone with the propeller is identical to propagation of the cone surface normal 
to itself a t  the speed of sound, and the cusp line is caused by focusing of the front 
sheets of the cone, on their way to becoming the rear sheets. Thus the nonlinear 
problem which must be solved to eliminate the singularities is equivalent to that of 
the focusing of a weak shock. This requires a transonic equation (Guiraud 1965) ; the 
weakly nonlinear theory of Whitham (1956) is not sufficient, because it too would 
predict a singularity a t  the cusp line, thereby violating the assumption on which that 
theory is based. Even when only the far field is required, any focusing on the linear 
theory makes nonlinear analysis difficult, because some of the rays pass through the 
transonic focusing region on the way out;  the analysis presented in Tam & 
Salikuddin (1986) would therefore seem to be restricted to directions in which 
focusing does not occur. These remarks are in agreement with Caradonna & Isom 
(1972) and Hawkings (1979), who discuss the necessity for transonic equations a t  tip 
speeds in the supersonic or high subsonic range. It should be noted that the lines of 
focusing on linear theory may spiral out to infinity even if only a small section of an 
edge is supersonic. 

Since the equations of transonic flow are so different from those of acoustics, one 
might ask whether the linear results of this paper are helpful even as a first step 
towards the nonlinear theory. The experimental results of Sturtevant & Kulkarny 
(1976) on the focusing of weak shock waves are relevant here; their photographs 
clearly show that for weak enough shocks the cusped surface of linear theory is 
present, but the pressure has a finite hump in place of a singularity. Thus one would 
expect some trace of the cusped cone in the exact nonlinear solution of the propeller 
problem, if the blades are thin enough. 
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Appendix. Evaluation of integrals 
On changing the notation to a conventional form, we require 

where f is discontinuous or singular on a surface DS : z = s(x, y). The origin is assumed 
to be a stationary point of DS, so that s = sz = sy = 0 at (x, y) = (0, O), and z = 0 is 
a critical value; hence near the origin, DS and its Hessian are 

z = s ( x , y )  x ax2+2hxy+by2 (A 2) 

and H = 4(ab-h2), (A 3) 

where a, b, h are constants. Two cases only will be examined: first, a > 0,  b > 0, 
ab > h2, which gives DS a local minimum at the origin; and second, ab < h2, which 
gives DS a saddle point. The results for a local maximum of DS follow by 
transformation. We shall not deal with examples such as ab = h2 or a ,  b,  h all zero, 
though their analysis is not difficult. 

The only relevant aspect of I ( z )  is its non-smooth part near z = 0 due to the 
different behaviour o f f  on the two sides of DS. By subtraction of a function 
smooth everywhere, f may be taken to be zero when z < s(x, y). Suitable forms when 
z > s(x,y) are f,+px+qy+rz+ ... (sharp), 

(blunt), 
f ( ~ ~ y ~ z )  = f ,+pz+gy+rz+ . . .  (A 4 )  I { z  - s(x,  y)P 

for the two types of trailing edge ; leading edges require a simple transformation to 
make f zero above DS. The various cases will now be treated in turn; SA.1 and 5A.2 
below are covered by Friedlander (1958). A subscript s on I will denote the singular 
part. 

A. 1 .  Sharp edge ; extremum 

The surface DS is approximated by (A 2) with positive a, 6 ,  ab-h2;  hence a plane 
of constant positive z intersects the region above DS in an ellipse enclosing area 
m/(ab-h2) i ,  whereas if x < 0 the plane lies entirely below DS. Thus 

0 (2 < 0). 

Further analysis gives an error term in (A 5 ) ,  due to terms beyond f, in f and beyond 
quadratic in (A 2), of size O ( z ) ;  therefore the jump in I’ a t  z = 0 is exactly 271fO/H4. 
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A.2. Sharp edge;  saddle 
If DS is approximated by (A 2) with ab < h2, a plane of constant z intersects the 

region above DS in an area bounded by two branches of a hyperbola; as shown in 
figure 3(b), the area may be connected or in two parts, transition occurring a t  z = 0. 
Now in the special case s(x, y) = xy, the area of the region xy < z, 1x1 < 1, (yI < 1 when 
(21 < 1 is 2(1 + z - z  In 121). Since the Hessian acts merely as a scaling factor, the 
dominant part of I' is 

'fo In - +o(z lnlzl). (A 6) (-fV (7 121 
I#) = - 

A.3. Blunt edge ; extremum 

x2 + y2 < z ,  when z > 0;  this gives 2x2;. Scaling by the Hessian leads to 
The special case s(x, y) = x2 + y2 requires the integral of (z--x2- y2)-a over the disk 

A.4. Blunt edge ; saddle 

complicated analytic function, plus, for z < 0, a term -4x( -2 ) ; .  Scaling leads to 
Integration of (z-xy)-a over the region specified in sA.2 produces a rather 

l+o((-z)t) (2 < 0). W o  1 I#)  = -- (-H)i(- 4 'i 
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